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T H R E E - D I M E N S I O N A L  L I N E A R I Z E D  S T E A D Y - S T A T E  

P R O B L E M S  F O R  M I C R O P O L A R  V I S C O U S  L I Q U I D  

M E D I A  

M. D. Martynenko and Murad Dimian UDC 532.5:517.994 

Linearized steady-state boundary-value problems are posed within the micropolar (asymmetr ic )  theory of  

liquid media, and analysis of  their uniqueness is carried out. 

The equations o f  motion for micropolar liquid media contain eight unknown quantities, namely, three 

components of the linear velocity v, three components of the angular velocity ~ ,  pressure p, and density p [1 ]. For 

linear steady-state flows of homogeneous viscous liquid media, the number of these equations reduces to seven and 
they have the following form [1 ]: 

or in matrix form 
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The following notation is used here: 

2gOld 2 2tr 0 

(v +/~)  A + 2~0~ - 4~ 2~020a 0 

2xOXO 3 (v + fl) A + 2xO 2 - 4 a  0 

0 0 0 

O . e + v - - f l  
O i = "-;-S-.. ( t = l , 3 ) i x =  2 ' a = - Y ' 

Here 2,/~, 7, 0, ~, fl, and r/ 

p > 0 ,  3 2 + 2 p > 0 ,  / ~ - y > 0 ,  - 7 > 0 ,  

For a ,  t,  v, and fl we have the following limitations: 

a > O ,  e > O ,  v > O ,  f l > O  ( 2 0 = v + f l ;  

are material constants of the medium, satisfying the inequalities [1 ] 

O + v > O ,  O - v > O ,  p > O .  

2 r l = v - f l ;  e = 2 ~ ;  y = - a ) .  

For system of equations (1) it is possible to obtain formulas similar to the well-known Green 's  formula in 

the theory of harmonic functions. For this, U will denote the column formed by the components of the vectors u, 

to, and q, so that U' = (Ul, u2, ua, Wl, w2, w3, q). Then 

(0) 
U A ~x V =  0z + a ) ( u ,  Av).+ Ot + 2 - a ) ( u ,  g r a d d i v v )  + 

+ 2a (u ,  rot f~) - (u ,  g radp)  + (v + fl) (oJ, AfJ) + (e + v - fl) x 

• (to , g r a d d i v Q ) + 2 a ( t o ,  r o t v ) - 4 a ( t o ,  Q ) - q d i v v ,  

whence 
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]=1 

where 

E ( U  V ) =  3 2 + 2 / ~ d i v u d i v v +  3 e + 2 v  
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3 
Rj(U, V)= ~: [uiou+~i~,Ul, (S) 

i=l 

Ov i 3 
oi/= (-p+adivv)~j+ ~, + a ) ~ +  ~.-~1 ~ 2a 2 

Oxi k= 1 
eij~ f~k, 

IXi] = ecSii div Q + (v + r) ~ + (v - r) Ox i (6) 

Therefore, after integration over the finite region D with a boundary S of the Lyapunov type and the external 

normal n, we obtain 

(0) ] 3 
A -~x V + E ( U ,  10 dx= f ~ [u iaii+wiHi]]n]dS. (7) 

D S i,]=l 

If D is an infinite region (the exterior of the surface S), then for formula (7) to be valid it is necessary that it be 

regular at infinity. A more accurate analysis shows that the components of the linear velocity u, v and r must 

decrease as 1 / I x I and their first-order derivatives as 1 / I x 12 as I x I -'- ~o; p and q must decrease as 1 / I x 12 as I x I 
CO. 

If (v, •, p) is a solution of system (1), all the above formulas are simplified due to the third equation in 

this system. 

For system (1) (or (2), which is the same), unique 9roblems are those with boundary conditions of one of 

the following types: 

type I: 

v l s = a ,  Q s = b ,  (8) 

type II: 

-p.i+ ~,+~) v+q,-~)~ ~UkQk ,bls=Ci, 
j= 1 Oxi k= 1 

3 [  OQ i d__~ ] = di, i = 1  3 (9) ~.~divO+ ~ (v+p)  + ( v - P )  "jls , �9 
]= 1 ~ Oxi 

The above formulas can be used to test these boundary-value problems for uniqueness in the following 

way. Assuming that for the corresponding problem two solutions exist, we obtain for their difference a homogeneous 

boundary-value problem (f -- m = 0, a -- b = 0 for the first type of boundary conditions and Ci = di = 0, i = 1, 3 for 

the second type of boundary conditions). For this difference 110 = V1- V2 formula (7) gives 

f F-,o (Vo, vo) dx = O, (10) 
D 

where 
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E0 (V0, V0 ) = 3e +3 2v (div 20)2 + _~ ~ + Oxi + 
i,]= 1 

a Ovoi O oj 3 
+ ~ ox] Oxi + 2 ~, el: ~ Qo~ + 

i,]=l k=l  

[0.o/ [ 0.o,1 L w §  - - 6i/div Q0 + 2  ~ ~ 0Q~ - (1 1) 
i,]= l OXi i,j= l OX] OX i .] 

It follows from the positive definiteness of Eo(V o, Vo) that equality (9) is only possible for Eo(Vo, Vo) - 0, i.e., 
when the following equalities are identically fulfilled in D: 

_ _  Ovoi 0 o/ a ~176 ~176 = 0 - + 2 ~,  ei.i~ f~ol, = O, 
div 2 0 = 0 ,  Oxy + OX i ' OXj OX i k=l  

Of~oi Of~o] Of~o.___Ai OQo] 26i ]divO 0 = 0  = 0 ,  i , j =  1, 3 ,  
OX] d- OX i -- ~ ' OX] OX i 

whence 

OVo_._ ! 3 0~2o i 
Oxi + k=l ~ eijk t2~ Ox] = 0 '  i, j=  1, 2, 3, 

and therefore 

O o = a  0, v o = a  o •  (12) 

where ao and b0 are arbitrary real constant vectors in E3 that can be determined only from the boundary conditions 

on S and the conditions at infinity (in the case of external problems). Because of this it can be stated that the 

internal problem with the first type of boundary conditions and the external problems with the first and second 
types of boundary conditions admit at least one solution (regular at infinity for the external problems). Any two 
solutions of the internal problem with the second type of boundary conditions can differ by an expression of type 
(12). 

For system (1) other types of boundary problems can be formulated when the boundary conditions are 

combinations of conditions of types I and II. Their test for uniqueness is carried out following the same procedure. 

As follows from the form of system (1), the pressure p is determined within an additive constant. For 

external boundary problems this constant is zero because the desired pressure must tend to zero at infinity. In the 
case of the internal boundary problem with boundary conditions of the first-type it remains undetermined. 

The third equation of system (1) yields the following condition immediately: 

f (v, n) dS = 0,  (13) 
S 

and therefore in the case of the internal problem with a boundary condition of the first type, a necessary condition 
for its solvability has the form 

f (a ,  n) d S = 0 .  
S 

The same condition fixes the arbitrariness in the choice of the vectors a0 and b0 in formula (12). 
The present study should be considered an extension of the classical results of [2 ] on the uniqueness of 

the boundary-value problems for the system of Navier-Stokes equations in the dynamics of viscous incompressible 
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liquids with a symmetrical stress tensor. The solvability of boundary-value problems for system (1) can be tested 

by functional methods or by construction of a suitable theory of hydrodynamic potentials. 

N O T A T I O N  

v, linear velocity vector, v--  (vl, v2, v3); f/ ,  angular velocity vector, f / - -  (~1, ~~2, ~3); P, pressure; p, 

density; f -- (fl, f2, f3), volume-distributed forces; m = (ml, m2, m3), volume-distributed moments; ;t and/~ ,  

volumetric and shear viscosities; r/, 0, r, rotational viscosities; y, measure of cohesion of a liquid particle with its 

environment; a -- - y ,  e -- 2r/, v = 0 + r , /3  -- 0 - z, tc = r + 7; Oi = O/Oxi,  i = 1, 2, 3; x, position vector of an 

instantaneous point in the Euclidean space E3; (a, b), scalar product of the vectors a and b in E3; a •  vector 

product of the vectors a and b in E3; ~i], Kronecker delta: (~ii -~ 1; ~i] = 0,  i ~e ]; Q]k, Levi-Civita symbol: ei]k = +1 

or eli k = - 1  if i, ], k form an add or even permutation of the numbers 1, 2, 3, ei]k = 0 if i - - ] o r  i = k or  j =  k; A ,  

Laplacian; ai], stress tensor components; lai], micromoment tensor components; D, region in e3; S, its boundary; n, 

vector of the unit normal to S; Ixl = ~/x12 + x22 + x 2. 
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